Its not cheaper if you only count the generation side you are ignoring Storage and Capacity factor those in and its not cheaper anymore.
Renewables are great while in combination with peaker plants as the renewables produce a good amount of the base load when the sun shines wind blows etc, That energy generation is dirt cheap no arguments there. The Issue is those Peaker Plants are OIL COAL and GAS fired in most cases. The ideal solution IMHO would be to phase out the peakers and replace them with grid scale power storage augmented with nuclear base stations to manage load and reduce the need for new construction of grid scale power storage. The issue with your suggestion is these grid scale batteries are projected to cost billions of dollars per project and if we forgo nuclear base stations to provide base load we would need a massive amount of these grid scale power storage stations in addition to also then having to generating roughly 90% more power than we do now from renewables alone to replace fossil fuels and to make up for inefficiencies in a storage dependent grid due to the fact that there would be constant losses of energy every time its transferred from generation to storage to use potential. Its simpler and more efficient make power on demand so I think we should take the current infrastructure and modify it. A turbine cares not what turns it. We can rip out coal fired oil fired and gas fired infrastructure and replace it with a modern generation of Small Modular Reactors ( it is proven technology ask the US NAVY https://en.wikipedia.org/wiki/United_States_naval_reactors ) With Peaker plants being transitioned to base stations this would make it so that the excess energy stored during the day can be tapped but we would not have to depend on it. Instead we can dynamically as needed (as the day ends in solar heavy locations or on calm days in wind heavy locations) start up the nuclear base stations to keep the grid energized using the batteries as a buffer on both ends as the Nuclear plants can not be cycled as quickly as fossil plants but can provide steady power on demand.
Did you even read your own article? It’s an opinion piece by one man. He’s using back of the napkin calculations just like I am, and while his math is mostly correct, and while I love his margins for error for increased solar required to take up the slack for unplanned issues with renewable power generation, he never discusses how much money it would cost to buy up all of that land to implement that massive amount of solar. He conveniently skips over eminent domaining of over 27,000 acres of land required to make such a large solar farm to replace the two already almost completed reactors not even counting to replace the two older already in place reactors… from that same location. Oh then we still have to also pay to decommission them…
The cost of decommissioning reactors is unavoidable and factored into the lifetime cost of power delivery. They don’t last forever despite the fairy tales people believe about nuclear power.
Talking about land use, what about the storage of nuclear waste? Are you going to have it in your backyard?
I like nuclear and all, but I don’t think nuclear can fill the same spot as peaker plants. Nuclear usually fills the base load needs on the grid. I don’t believe there’s nuclear with ramp rates capable of competing with a peaking gas turbine.
Energy storage does fill this gap usually. My ideal grid would be a semi-flexible nuclear baseload (+ some ancillary services), renewable “mid-load,” and energy storage peaking (+frequency response, etc.).
that is what im describing. im saying turn old peakers into base stations. use batteries as the new peak power stations. batteries can then be charged with renewables, the batteries can also take up excess power from base stations as they cant immediately downshift production.
Its not cheaper if you only count the generation side you are ignoring Storage and Capacity factor those in and its not cheaper anymore.
Renewables are great while in combination with peaker plants as the renewables produce a good amount of the base load when the sun shines wind blows etc, That energy generation is dirt cheap no arguments there. The Issue is those Peaker Plants are OIL COAL and GAS fired in most cases. The ideal solution IMHO would be to phase out the peakers and replace them with grid scale power storage augmented with nuclear base stations to manage load and reduce the need for new construction of grid scale power storage. The issue with your suggestion is these grid scale batteries are projected to cost billions of dollars per project and if we forgo nuclear base stations to provide base load we would need a massive amount of these grid scale power storage stations in addition to also then having to generating roughly 90% more power than we do now from renewables alone to replace fossil fuels and to make up for inefficiencies in a storage dependent grid due to the fact that there would be constant losses of energy every time its transferred from generation to storage to use potential. Its simpler and more efficient make power on demand so I think we should take the current infrastructure and modify it. A turbine cares not what turns it. We can rip out coal fired oil fired and gas fired infrastructure and replace it with a modern generation of Small Modular Reactors ( it is proven technology ask the US NAVY https://en.wikipedia.org/wiki/United_States_naval_reactors ) With Peaker plants being transitioned to base stations this would make it so that the excess energy stored during the day can be tapped but we would not have to depend on it. Instead we can dynamically as needed (as the day ends in solar heavy locations or on calm days in wind heavy locations) start up the nuclear base stations to keep the grid energized using the batteries as a buffer on both ends as the Nuclear plants can not be cycled as quickly as fossil plants but can provide steady power on demand.
Cost per kW:
Nuclear: $6,695–7,547
Solar PV with storage: $1,748
https://en.wikipedia.org/wiki/Cost_of_electricity_by_source
You ran for the hills when I called out your mistruths earlier. You’re still lying.
Here’s more:
"Roughly speaking, the total cost of these solar-plus-storage facilities would be:
$8.4 billion for 10.55 GWdc of solar power, fully installed at 80¢/watt
$527 million for hypothetical power grid upgrades at 5¢/Watt
$7.8 billion for 39.3 GWh of energy storage fully installed at $200/kWh
Around $16.8 billion grand total, no incentives
So, Georgia, pv magazine USA just saved you more than $13 billion (as of today anyway)."
https://pv-magazine-usa.com/2021/08/05/youve-got-30-billion-to-spend-and-a-climate-crisis-nuclear-or-solar/
He’s just peddling right wing talking points with no intention of actually examining the data.
Your comment is good for anyone else who stumbles across this and is willing to learn.
Did you even read your own article? It’s an opinion piece by one man. He’s using back of the napkin calculations just like I am, and while his math is mostly correct, and while I love his margins for error for increased solar required to take up the slack for unplanned issues with renewable power generation, he never discusses how much money it would cost to buy up all of that land to implement that massive amount of solar. He conveniently skips over eminent domaining of over 27,000 acres of land required to make such a large solar farm to replace the two already almost completed reactors not even counting to replace the two older already in place reactors… from that same location. Oh then we still have to also pay to decommission them…
I haven’t linked any articles, but Im about to. I know keeping track of simple comment chains is difficult for some people.
https://blog.ucsusa.org/edwin-lyman/five-things-the-nuclear-bros-dont-want-you-to-know-about-small-modular-reactors/
The cost of decommissioning reactors is unavoidable and factored into the lifetime cost of power delivery. They don’t last forever despite the fairy tales people believe about nuclear power.
Talking about land use, what about the storage of nuclear waste? Are you going to have it in your backyard?
Gladly https://en.wikipedia.org/wiki/Deep_geological_repository
I like nuclear and all, but I don’t think nuclear can fill the same spot as peaker plants. Nuclear usually fills the base load needs on the grid. I don’t believe there’s nuclear with ramp rates capable of competing with a peaking gas turbine.
Energy storage does fill this gap usually. My ideal grid would be a semi-flexible nuclear baseload (+ some ancillary services), renewable “mid-load,” and energy storage peaking (+frequency response, etc.).
that is what im describing. im saying turn old peakers into base stations. use batteries as the new peak power stations. batteries can then be charged with renewables, the batteries can also take up excess power from base stations as they cant immediately downshift production.